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ABSTRACT

-— “\‘\
“ This paper is concerned with the analysis of the solution set of the two-

point boundary value problem modelling the avalanche effect in semiconductor
diodes for negative applied voltage. - This effect is represented by a large
increase of the absolute value of the current starting at a certain reverse

basis.QBWe interpret the avalanche-model as a nonlinear eigenvalue problem
{(with the current as eigenparameter) and show (using a priori estimates and a

well known theorem on the structure of solution sets of nonlinear eigenvalue

problems for compact operators) that there exists an unbounded continuum of

—

solutions which contains a solution corresponding to every negative voltage._ﬁ’,r
Therefore, the solution branch does not "break down"” at a certain threshold

voltage (as expected on physical grounds). We discuss the current-voltage

characteristic and prove that the absolute value of the current increases at
most (and at least) exponentially in the avalanche case as the voltage

decreases to minus infinity.
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SIGNIFICANCE AND EXPLANATION

In this paper ve iﬂves{;gpto%g(u mathematical model equations for impact
ionization in a semiconductor diode.-> This effect (also called avalanche
generation) is characterized by a 3;uddclzrincreaoe of the current flowing
through the device starting at ; certain negative voltage. Physically, the
diode "breaks down" shortly after the onset of avalanche generation.
Therefore, it was conjectured that there is a threshold voltage beyond which
no solutions of the avalanche model exists. We show that this conjecture is
false; more precisely a continuous branch of solution along which every
negative voltage and every negative bias is assumed (at least once) exists.
Mathematically, the avalanche-effect only becomes apparent through an
exponential increase of the absolute value of the current starting at a
certain negative voltage.(,
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A MONLINEAR EIGENVALUE PROBLEM MODELLING THE
AVALANCHE EPFECT IN SEMICOMDUCTOR DIODES

Pater A. Markowich*
1. INTRODUCTION

We investigate the (one-dimensional) boundary-valus problea which describes the
performance of a semioconductor diods in the case of avalanche generation. The physical
situation is as follows. A semiconductor is doped with donor atoms on the right side (n-
side) and with acceptor atoms on the left side (p-side) and a bias is applied to the Ohmic

contacts (see Figure 1).

pn-junction

Anode p-side n-side Cathode

Pigure 1: Diode

For simplicity we assume that the pn-junction is in the middle of the device, that the
doping profile (that is the difference of the concentrations of donors and acceptors) is
constant in the n=side as well as in the p~side and o0dd about the pn-junction.

A well-known phenomencn is the 'breakdown' of the diode dus to impact ionization

(avalanche generation, see Sze (1981)) under sufficiently large negative bias. This

‘breakdown’ is based on a 'sudden’ increase of the current (as a function of the applied
bias).
To study the current-voltage (J-V) characteristic of the device we investigate the

basic semiconductor device equations dascribing potential and carrier distributions in the

*Technigsche Universitlit Wien, Institut fur Angewandte und Numerische Mathematik,
Gueshausstrasee 27-29, A-~1040 Wien, Austria, Burope
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diode (mee Van Roosbroeck (1950), Sze (1981)),

(1.1) 120' = ne-p-=D0D Poisson's equation

(1.2) n' = nd' + I electron continuity equation } ~t € x € 1 [
(1.3) P’ =o' - Jp hole continuity equation

¥ denctes the electrostatic potential, ' is the electric field, n(p) the electrom .

{hole) density, Jn(Jp) the electron (hole) current density and D the doping profile.
The equations (1.1)=(1.3) are already in dimensionless form, the doping profile is scaled
to maximally one and the independent variable x %o [-1,1). In our symmetric and

piecevise constant case

(1.4)

1, 0<x< 1 (n-side) ;
D=
1, =1<x<0 (p-side)

2
holds. The pn-junction is at =x = 0.) (<< 1) 4is a scaling parameter.
Generally the current relations are given by
(1.%) (a) J;: =Ry {b) J;, = =R
where the recombination-generation term R is a nonlinear function of n, p, Jp. Jp and
¥' (the electric field). Ve assume that R is given by the avalanche-generation ters

(sea Sze (1981), Bchilex (1982));

(1.6) R= n(an,ap,v) - -c(o')(lau| + IJpl)
where G > 0 1ig the slectron-hole ionisation rate. a 1is strongly field-dependent.
-2 -l
. - ye lTI 1G]
Commonly used a's are a(t) = ve ¢+ al{t) = vY|tle ¢ Y0 > 0, Por simplicity we

assume that a 3 C([0,11) + [0,Y], Y > 0 4is the nonnegative functiomal
(1.7 a(g) = B(|!II_1 ”), 8 : [0,] + {0,Y], 8 ecC([0,»]) and nondecreasing
[

(a,b) '™ OUP {£(x}|). We will later on remark on the extension of results to more
i a<x<d
realistic ionization rates.

(e

The total current J is given by

(1.8) J-J“’Jpo

Wote that J 4s a constant in [-1,1] Decause of (1.5).




The boundary conditions (at the Chmic contacts) for (1.1)=(1.5) axe

(1.8)(a) np-c‘. n-p-D=0 at x¢t1

where 62(< 1) algo originates from the scaling and

(1.8)(b) 1) -lnei';-"-v. $¥(=1) = tn’-‘;;-)wv .
! 8

VEeR is the (scaled) voltage applied to the diode (details on the scaling can be found in
Markowich and Ringhofer (1962) and Markowich (1983)).
Because Of our sysmetry assumptions we restrain the investigation to ‘symmetric' i

solutions, i.e. solutions which fulfill

(1.9) ¥x) = = $(=x), =nlx) = p(-x), Jn(x) - JP(-x), xe {-1,1] .

Another simplification is accomplished by employing the substitution

\/ -

(1.10) nes= 62‘ g, p*= 62. L Jn - 62. u', JP = _62.-0', .

The system of equationa obtained from (1. 1)~(1.8) by using (1.9}, (1.10) is

(1.1%) th' - 620‘ - Gzc*v -1
(1.12) (furye = carcte®urt + e 0 xc
(1.13) (0 Vv = catprtte?ur + fe M)

subject to the boundary conditions

4
1+ 1+ 48
(1.14)(a) $0) = 0, ¥1) = (12 :2’ 5y .y
2

{1.14){p) u(0) = v(0), wu(1) = o’

(1.14) () v (0) = —u'(0), V(1) =o',

The boundary conditions for u and v at x = -V are u(-i) = .-v' v(~1) = ov- The
maximum principle (see Protter and Weinberger (1967) applied to (1.12), (1.13) gives
(1.15) wr e, vr e on e

Therefore n and p are positive (as physically required for densities). A solution

a3




1l

for V=0 isgivendy us 1, v=1 and by solving

(1.16) (a) A e 82 - 5% -y, ocxc
/ 4

(1.16) (b) 900) = 0, w(1) = pp(LttrLt b,y
26

The solution (V,$,u,v) = (0.0.,i,n where 0. is the unigue solution of (1.16)) is
called equilibrium solution. It implies J = 0 (the whole diode is in thermal
equilibrium).

The two-point boundary-value problem (1.11)=(1.14) models the bias-controlled diode.
In some cases it is more convenient to investigate the current-controlled device

represented by the equations (1.11)=(1.13) subject to the boundary conditions.

/ 4
(1.17)(a) 00) =0, 9(1) = an(LEEL2dby
28
(1.47)(b) ul0) = v(0), u(t)v(1) =1, u(1) >0
(1.17(c) u’ (0) -—"5, vio) = - -,
26 28

(note that (1.17)(c) follows from

3 =3.0) +3(0) = §2e¥150 (0) - 6267951 (0) = 26200 (0) = -2824°(0)) .

The problems (1.11)=(1.14) and (1.11)=(1.13), (1.17) are equivalent in the following

sense. A solution (V,.O'.u,,v’) of (1.11)-(1.14) yields the solution (J,.O'.u'.v1) of
]

2%, 2,
’-6 e u; §%e vy and a solution (szz.uz.vz) of

(1.11)=(1,13), (1.17) yields the solution (Vz,tz,uz.vz) of (1.11)-(1.14) where

(1.11)=(1.13), (1.17) where J

v2 = fn uz(l).
There are numercus analytical and numerical ivestigations of the (even multi-~
dimensional) semiconductor device equations in the non-avalanche case (i.e. the

recombination-generation rate R only depends on n and p) (see Mock (1983) for a rather




complete presentation of the results as well as for a collection of references). Por the
avalanche problem however there are (to the author's knowledge) only & few numerical
studies (see Schiitz (1982); Schiitz, Selberherr and Ntzl (1982)).

In this paper we regard (1.11)=(1.14) and (1.11)=(1.13), (1.17) as nonlinear
eigenvalue problems (in the sense of Rabinowitz (1971), Krasnoselskii (1964) and
investigate the solution set for nonpositive current
(1.18) ¢ = (T, 4u,v) € (=,00 x (c2(10,11)° 1 ($,u,v)

solves (1.11)=(1.13), (1.17) with J = 1)
and the properties of the current-voltage (J = V) characteristic
(1.19) 3" = ((v,3) € Rx (==,0]) there is (¥,u,v)

such that (J,%,u,v) €C and V = tn u(1)} .
The main theorem of this paper states that C  contains an unbounded continuum (i.e. a
closed and connected set in the (-=,0]} x (cz(ll),i]))3 =-topology) emanating from the
equilibrium solution (0,0.,1,1) whose projection into (-»,0] equals (-»,0] (that
means C  contains solutions for all J < 0) and that the voltage V + = a5 J + -=,
Therefore (1.11)=(1.14) has a solution (¥,u,v) for every V < 0,

This result holds independently of the upper bound Y of the ionization rate a and
carries over to more realistic a‘s than given by (f.7). Therefore the conjecture that
the branch of solutions of (1.11)=(1.4) breaks down if Y > % holds (see Sze (1981)) is
mathematically rejected at least for this model problem. We show, however, that the
magnitude of Y has a decisive impact on the J - V-characteristic. Por a £ 0
(nonavalanche case) the current fulfills V€ J € eV for VCO0 while |J| increases
exponentially as V + == for vy > -,}. (cqs¢y > 0 only Gepend on A and §). The
exponential growth of the current represents the 'avalanche effect' and the diode 'breaks
down®’ in real life when the current gets too large. We also show nonuniqueness for V = 0
for all a for which a(’;) is sufficiently large.

The paper is organized as follows. Section 2 deals with the a priori estimates needed
to prove existence of solutions for all J < 0 and Section 3 contains the existence proof

and conclusions.
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2. A PRIORI RSTIMATES
Por the following we take J < 0. AQ
At first we solve the continuity equations (1.12)=(1.13) for fixed ¢ @ c'([o,u). Ve '
revrite them as
(2.1){a)} Jl; - -c(")(lJnl + IJPI) s
0¢€x< 1

2.1)(b) I mae I | + (T
(2.1)( o ut)(lnl Ipl)

with the initial values

J J
(2.2)(c) Jn(O) = JP(O) -3

(2.1)(a) implies that J, is nonincreasings since Jn(O) €0 weget J <0 on {0,1].

Jp(o) € 0 holds and therefore we (initially) solve
Jl L]
M -~|J1, Jp = al|J}

(we wostly drop the argument %' of a) and get

x e [0,1] if 0<c<%

-l -l
(2.3)(a) Jn 2 (2ax + 1), Jp 2 (=2ax + 1) for .

xe[o,;—a] if a>3

1
For & > - we have to solve

2
1
's - LIS - ——
Jn u(Jn Jp). JP c:(:l'l Jp), 2a < x< 1
1 1
J'n(h = -lal, Jp(zc) -0
and obtain

___[g_]_ 2ax-1 _-m.2w1 1
(2.33) 3 7 (e + 0,3 7 (e +1 for xe[3= 1.

u and v are computed from (1.10), (1.14)(b),{c):

-6-




(208 + 1)ds for x € [0,1] if O0<a <+

1
( { VW !

1
(2.4)(a) uw=e + 2, 4 / .-0(.)(.200-1 + 1)ds for x e [-;_a' 1] 12 a> b

262 x 2
' 12¢ 1 _
- / e (%) (244 + 1)as + | eS8, gyae
= | x 1/2a
F for xe [0, %] 1f a>3
ki q ' 2a 2
([ ! V(s) 1
| &' (<208 + 1)as for x e [0,1] 1t 0cacy
£ x
¥

1
v .-V - B4 . I .O(a)(_‘mn-i
¥ 2
; 28 x

+ 1)as for xe[';—c, 1] 1t a>%

, 1/2a 1
‘ | e"')(-mu + 1)ds + | o“.)(-oz‘“-1 + 1)as
x 1/2a

for xe[O,;fa‘] it a)l

2 °
We use the condition u(0) = v(0) to relate V and J and get
(2.5) V = area -mn(u%’—’), J<o0
48
where the functional I : c'([o,1]) + R is given by
' -¥(s)
(2.6)(a) 1) =] (" g (s) + 7" £,(s)lds
0
with
. 1 1 1
{ -2ax+1 for x € [0,1] if 0 <a < and for xe[o.;;] if a> 3

(2.6)(b) gc(x) -

2ax-1 1 1
~-e + 1 for xe[;;,ﬂ if a> 3

R TN




Zax+1 for x € [0,1] if 0<a<y andfor xe [0, -] 1f a>3

(2.6)(b) fu(") -
.2ax-1

+1 for x e [l;, 1] if a> %

1ec(c?([0,1]) » R) holds. For the estimates of the current J in terms of the

voltage V we use

2
48°ginh V
(2.7 J 06 if I(¢) # 0 .
We collect the properties of u, v, "n' Jp and J in:
Lemma 2.1: Assume that O < a(¢') < ~;— holds. ‘Then
1 1
(1 1w >t-20) "Vas+| e s> 0
0 0

(1) T <0 > V<O, J=0 <om)> V=0 <mmd yEv =1,
(114) let V < 0 hold.

Then "n <0, Jp €0 on {0,1)
(iv) u is decreasing on [0,1), eV<uce

(v) v is increasing on [0,1), el <veeV,

2.2: Assume that a(y') >% is fixed. Then

-v

)

(1) there is a ¥ €C'((0,1]) such that I(¢) <0
(11) I =0 =) (Vo0 camd uZvs=s1), JCO0 > (VCO, I(y) >0 or
v >0, I(¥) <0)
(114) V = 0 <==> J = 0 or I(y) = 0.
(iv) Let J < 0 hold.
Then J, €0 on ([0,1]; Jp < 0 on [0, -;-;), Jp> 0 on (%, 1]
(v) u is decreasing on [0,1], u > eV
(vi) v 1is increasing on [0, 7:,:] and decreasing on [;—a’ 1], v»> e'.
Therefore, for any solution (V = 0,9*,u*,v*) # (V = 0,03,1,1) of (1.11)=(1.14) (with
Y > %) I(¢*) = 0 has to hold.
We now turn to Poisson's equation (1.11) subject to the boundary conditions
(1.14)(a). Differentiating (1.11) gives

(2.8) (a) A2t = (n+pie’ +J, 0Cx<1

and (1.14) implies

e




(2.8)(b) (¥1(0))" = - ‘—2, ($'(1))" =0 .
A

The maximum principle (see Protter and Weinberger (1967)) yields

lemma 2,3: J <0 implies %' > 0 on [(0,1] and V < 0.(1). Thus the a priori bounds
(2.9) 0 € ¥(x) € (1) = 0,(1) -v, xe€ (0,1

follow from J € 0.

Differentiating (2.8)(a) and using (1.11)(a) yields
2 "y 2|2 (] |2 ]
(2.10)(a) AT(¥™)" = [(n + p) + A%9' "1y +(v)+(an-Jp)t, 0¢<x< 1

(2.10)(b) o) =L,y =0
A

From (2.3) we conclude that J, = Jp €0 in [0,1] for J € 0. Since %' > 0 we obtain

Lemma 2.4. J € 0 implies $" > 15 on [0,1] and therefore
A

(2.11) n(x) » p{x), 0<€ x<1

holds.

Proof: z = - i; is a lower solution of (2.10) and (2.11) follows from (1.1) (with
D=1 on [0,1]).

We now derive upper bounds for n.

Lesma 2.5. let J € 0 hold. Then

(2a + 1)(1 - x) for x € [0,1] if 0<c<%

1+/ 1+ a8 13 2a-1

1 1
(2.12) n(x) € ——g—— + 5=+ { (e + 10 -0 for xe 3 1] if a>3

1

2" 2x + (020-1

s (- 3)
1 1
for x e [0, 3=] if a> 5.

Proof. We multiply (2.4)(a) by Gze* (getting n) and estimate ev(X)-'(s) < 1 for

s > x (¢ is nondecreasing). (2.12) is then obtained by integration and estimating

1 - e-20(1-x)

<1 - .
2a ) x

In the case of zero generation (a = 0) we obtain upper bounds for n and p which are

independent of J and V.

-9-




; Lesma 2.6, et G 30 and J< O hold. Then ¥* <0 on [0,1] and
(2.13) p(x) € ni(x) € p(x) + 1, 0< x< 1
1 (2.14) 0<nx) +ptx) ¢/ 1+ 48%, 0¢xc

3 hold.

Proof. a = 0 implies Jn H Jp H % and therefore z = 0 is an upper solution of

k. (2.10). (2.13) follows from (1.1)(a). Also (n + p)' = ¢'(n - p) holds. Thus n+ p 1is

nondecreasing and n + p < n(1) + p(1) =/ 1 + 46‘ follows. ‘H
|
We now derive lower and upper bounds for ¥ using the estimates of n and p. ;

E lesma 2.7. Let J € 0 hold. Then

: 2
' (2.15) v < (1) + S)x -3, 0<xc
2\ 23
follows. If ¢ = 0
K. 2 1
&
: (2. 16) vix) » - 3-—2- + ¥(1)x
2\
holds.

2

2
Proof. ¥(x) = (¥(1) + ~2)x - B solves
— 2 n

A% = o1, §(0) =0, B = WD .
lemma 2.4 implies that ; is an upper solution of (1.11)(a). Por & = 0 we obtain by
1
integrating V" € 0 : (1) < $'(0) and from ¥" > - =
A
2 2
Wix) > - Eo s gt 0)x > - 2w pinix .
22 2\
To get a lower bound for % in the avalanche case we prove

5
lenma 2.8, Let J <0, |J] ?» Ky, hold. Also let 0 <€ <1 be such that {Jle” > K,

where K,, X, only depend on 1, § and Y. Then

1
e + qa(x)

+ olx) ! , D€ x¢ 1 ;
IJI:S

(2.17) v'ix) >

holds whers €K, (Ky only depends on A,3 and Y) and

lolm'” 3

-10-




(26 + 1)(1 = x) for x e (0,1] 1if oc.«%

(2.18) g (x) = WM e N0 for xe [;—.. 1 if a >%

-1

s+ e n(1-L) for xefo, L] 1e 0>l

2 .
Proof. The Lemmas 2.4 and 2.5 imply

ntp.2n 14/ 1+ a8*

< +
KD 131 %!x

We now choose € such that 1+/1046‘<l.1lz. Thus n—l.-;TE<e*g¢(x) holds.

Obviously the solution y(2 0) of

2
A
(2.19)(a) 197 y" = (e + ga(x))y -1
(2.19)(b) y'(O)--J—;. y'(1) =0
A

is a lower solution of (2.8), that means 0< y < $ holds on (0,1}, For large |J| the

problem constitutes a linear singularly perturbed (Neumann-type) boundary value problem
2

with the reduced solution (obtained by setting -?-JT to gero)

b 4

1
r" e+ g (X
A standard singular perturbation analysis (see Howes (1978)) which takes the possible

1
smallness of € into account (yr(1) =< 11) gives

\J
r [0,1] 3
/ate®
whenever |J]| > Ky, I.‘.llcs > xz This implies (2.17).

A lower bound for ¢ follows by integrating (2.17):

=t




Lemma 2.9. Llet the assumption of lLemma 2.7 hold. Then

. 1 1
Ltmaitm T me o)

for x e (0,1] if o<¢<%

(2.20) ¥x) > pix) *{ 1y tor xelo, L) 1f a3
Ialcs
1 1
L, + tn (
TNy e e o s
for xe [, 1) 1 a> 3

holds where ""[0.1) < K, and Ly, Ly L only depend on Y.
Since € can be made arbitrarily small when J + == (gtill keeping Ialcs large)
1 1
] L ] - -
the Lesmas 2.8 and 2.9 imply that U9 |(°'"(> ) 2K, T) and W(1)(> K tn ;) become
unbounded as J + -,
We also need an upper bound of $°:
Lesma 2.10. J € 0 {mplies

(2.21) 0w <xe!a + 1

[
where K¢ only depends on ) anda ¢.

v
Proof: (2.4)(a) implies n + p > n > 620 « ‘Thus the solution w of

32w = 8%% - 131, w'(0) = - Lo =0
A

is an upper solution of (2.8). Therefore

cosh (‘:- .V/2 (1

Vi < v = @V AL, T ;/:))
§ ASe l!.nh(x e’f)
and (2.21) follows since V ¢ 0.(1).
We now employ the derived bounds to get a priori estimates on the current-voltage
characteristic.
Theorem 2.1. Assume that (J,9,u,v) €C and (V,J) € J°. Then

(2.22) C‘IVI < 13} ¢ clel if aly') =0

-12~




v
J

=2(v
3 -o”)

(2.23) cvic 13l cc “ 1f 0 <aly') ‘é

holds. If a($') >% then

(2.24) c ! - CUN VI = 1728 o < b oexptis + w6 + 11Dy

holds for i <a(¥’') <a then

2 with some c°<1 and gvery ¥ > 0. If a(9*) > a

-2ivl, Ivl

(2.25) cg1 - o < 131 < D exp((5 + W' + v .

The constants C,,¢++,Cg oOnly depend on A,8 and Y. D depsnds on 1,8,y and 4.
1

Proof. 0 ¢ @ <-} and $20 imply 0 < I(9) ¢ 2 [ cosh $(e)ds and (2.15), (2.7) yield:
— 0

2 atah (9(1) + =)
0 ¢ 1(9) ¢ —

‘ .
(1) ¢ —
a?
Thus
8201 - & 21" (gt1) + 1
131 » A

o"'"unn(om + "33')
22

and the lower bounds for |J| in (2.23), (2.23) follow. a X 0 implies
t

I(9) = 2 [ cosh #(a)ds and the estimste (2.16) gives
[}

s1mn(e(1) - L)
2\

I(9) > 2 N
.(‘) - e——t—
a?

|
when (V| is so large that ¢(1) - - > 0. We derive (using (2.7))
2

2, o2Vl

820 (e - L)
2)

7 < -
o Masnn(se1) - %)
2

and (2.22) is proven. PFor 0 < a < % we estimate

13-




1
W) > [ (<208 + 1)3g =1 -a .

Thus

and the upper bound in (2.23) follows. Now let a(9') > ;‘. Then, since ¢ is

nondecreasing and since g (x) 1is positive in [o, ;—“) and negative in (';—", 1):

1 1
e < f £,(s)ds + ot(1/20) / 9qlo)ds =
0 0

1,1 21, e(20), .1 _ 1 2a-
2a te b+ -me )

1 1 2a=1

(r°>o in ({0,1]t) holds. The function h(c)-'+z-zc has a unique zero
)]
coe(;, 1). Thus
2, c>co
I(9) ¢
L L 2001 1 e(1/20) 1
1 «’20. 020 ,2<¢<u°

holds. If I(¥) > 0 the lower bound in (2.25) follows and the lower bound in (2.24) (also
for I($) > 0) is implied by (2.15) which gives

() cerivi &
lesma 2.9 implies that 'V +» = a5 J + -o' 4nd therefore I(9) € 0 can (for J € 0)
only hold for |J| € P, where P depends on A,8§ and Y. This proves the lower bounds
in (2.24), (2.2%).

(2.20) yields #(1) = ¢ (1) = V> L, + 2‘_:
[ ]

ta % we oot ¢ = 1/101"*° tor

+ 1
0 <o < 1 and obtain the upper bounds in (2.24), (2,25) for (J| suff. large since

-]
v« 0.(1) holds.
8ince lamma 2.8 implies that a(¢') + Y as J + -» (or as V + -=), The theorem
proves that the current J increases (in absolute value) at least (and at most)

exponentially as V # ~= {n the avalanche case Y > -;- For sero generation (v = 0) the

~ig-




increase is at most (and at least) linear. For the intermediate case 0 < Yy € % the

increase is at least linear and at most exponentisl. The author conjectures that the
1
distinction of the cases 2 €y« e, and Y > Go only comes in for technical reasons and

that (2.25) holds for all vy > %

3. EXISTENCE THROREMS
We need the following
Iesms 3.1: let w be the (unique) solution of the problem
(3.1)(a) v = atxe™ - ba™ ™" ¢ gx), 0 ¢ x <
(3.1)(b) w(0) = Uoe wi(l) = L
where a,b € C([0,1]); a,5>0 on [(0,1]; NnER. Then w= win,ug,u,,2,°) regarded as
mapping from 2 x C'([O.ﬂ) into C‘([O.‘l]) is completely continuous.
Proof: We take n e [n,Al, uy € (uo.ugl, u, € [y, 4,] and denote

a = amin alx), s 1= max a(x) (analogously for b). Then the unique solution v, of
0<x<t 0<x< 1

"‘.ﬂ "11

vy = ae - be + 021 0¢x<

(o,1)°

¥y {0) = uge v (1) =y,

is a lower solution of (3.1) and the unigque solution wy of

3
vl = ae - be - 1£1

2 0<x< 1

0,11’
v (0) = U, wy(1) =i,
is an upper solution of (3.1), i.e. v, € w< v, on [0,1] holds. Since

-2 1
| [V | < ae
¥“to,n

+ be 2 + 120
{o,1}

t 1
holds, Ascoli's theorem implies that w : l’ x C ({0,1]) » C ([0,1)) maps bounded sets
into precompact sets. The continuity of w is immediate.

Mow we prove the basic




Theorem 3.1t Por any Y > 0 the solution set C  of (1.19)=(1.13), (1.17) contains an
unbounded continaum C (1n the (==,0) x (€2(10,11))° -topology) emanating from the
equilibrium solution (0,9 ,7,1) whose projection into (==,0) equals (=,0) (i.e. €
contains a solution (J,9,u,v) for every J ¢ 0).

Prcoft We regard V = V(J,#) (given by (2.5)) as functiomal V s (~=,0) x c'(10,1]) » m.
The continuity of I implies the continuity of V. Using (2.3)=(2.5) we rewrite Joisson's

equation (1.11) as

(3.2)(a) 229 « 820V G2 9V G x), O € x € 9
(3.2)(b) $(0) = 0, $(1) = 9 (1) - V()
with
1 J (s) L) J (s)
(3.3) G (x) = o7X) [ NS | e R Rl B |-l-—_, &
x x

J (n) J (x)
(note that I-n;—', l-.J_-l are independent of J, they only depend on a(¢’) and on

x). G 3 c'(lo,n) > c‘([o,il) is continuocus since a3 c'((O,ﬂ) + [0,Y] 1s continucus.
We set ¢ = 0. + ¢ and rewrite (3.2) as the fixed point problem ¢ = T(J,4) wvhere

y = T(J,2) is defined as the unigque solution of the problem

3.0 A%ym = Sampiy ¢+ 9, ¢ Va9, ¢ 81
-6 axply =9 - V3,9, ¢80 =1 -2 0 |TlGte, ¢ a), OCxE

(3.4)(b) y(0) = 0, y(1) = -v(b.o. +3) .

Lesma 3.7 and the ocontinuity of V and G imply that T ; (-=,0] x c‘((@,'l) is
completely continuous. V(O,w) ¥ 0 and therefore y = T(0,2) is given by the solution of

™ ¥
(3.5)(a) Age 83y * .83, °

-1 -x’o;. 0¢ x¢ 1

(3.5)(b) y(0) » y(1) = 0 .

y 3 G follows. Prom Mabinowits (1971, Theorem 3.2) we conclude that the solution set of
2(J,0) = ¢ oontains an unbounded continuum B~ (in the (-=,0]) x c'((0,1))-topology).

Theorem 2.1 and Lemma 2.3 imply

==




PRCEY N

1v1 ¢ max(w (1), 1%"-)

and
-Q.<Q<o.(1)-"+|v| .

lesma 2.10 yields
vl .
‘0"‘0"1‘0 (131 + 1) 0:.
We conclude from these estimates

1ale, 13l

+ 191 Su(1+13) ¢+ ‘e 1)

"o, (0,1]

where M > 0 4is independent of J (and V). Since B is unbounded it has to contain
solutions (J,¢) for all J € 0. The statement of the theores follows by obeerving that
9 and v as given by (2.4) are continucus as functions of (J,9) in the
(=,0 x ¢'(10,1]) -topology.
The most important implication of Theorem .1 is:
Theorem 3.2: For any Y > 0 the current-voltage characteristic J ocontains & continuocus
curve T emanating from (0,0) whose projection l'; into the J-axis equals (~=,0] and

whose projection [_ into the V-axis fulfille

(3.6) (a) T, = (=,0] for 0 ¢y %
- ?
(3.6)(Db) (=,00 CTLC (~=,9 (1] for Y> 3.

Proof: Theores 3.1 implies that 3~ oontains a continuum O emanating from (0,0)
whose projection into the J-axis equals (-»,0]. Prom Lesms 2.9 we conclude that
1) = 0.(1) = ¥V {9 positive and unhounded as J * =, lemma 2.1, (ii) implies that
VEO0 for J€O0 and 0C Y < %. Therefore (3.6)(a) follows. (3.6)(b) is concluded by
noting that ¢(1) = 0.(1) «-V>0 for JS 0 holds (see lesma 2.3).

The obvious consequence for the solution set
(3.7) 0" = ((0,0,u,9) € (=01 x (c*110,11)°}(#,u,v)

solves (1.11)=(1.14) for V = U)

of the voltage-controlled diode is

-17-
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ol 3.1 D™ contains an unbounded continuum D containing (0,4°,v*,u®) whose
projection into (-=,0] equals (==,0]¢($?,u*,v*) = (0..1.\) if the equilibrium solution
18 unique (e.g. for 0 <Y< J). J< 0 holds for every (V,h,u,v) 85 . (3 ocontains &
solution for every V < 0).,

We now show that multiple solutions of (1.11)=(1.14) for V = 0 can occur.
Theorem 3.3: Assume that a(¥’) > B(> 3) where N >0 only depends on A and 8. Then
there is & solution (¥*,u*,v®) of (1.11)=(1.14) for V * 0 which is different from the
equilibriua solution (9,,1,1) and J¢ = 82" (we)t - 6% (v0) < 0 Molas.
Proof: We obtain from (2.6)
1

1
() =2 (/] cosh ¥(slas - | h () sinh ¥(s)ds)
0 0

1
2ax, O‘xt-i:

h (x) = (for aty) > ) .,
@ 2ax-1 1_ 2
™ ‘2 € x¢€ 1

Obviously ha(x) > 2ax on (0,1] and therefore
1 1

1(9) € 2 (f cosh ¥(s)as - 2a [ s sinh ¥(s)ds)
0 0

holds. Choosing @ such that

1

| cosh ¢ (s)as
R | :
M’o) > 2 1

| s sinh ¢ (s)as
0 [ ]

iaplies I(¥,) < 0. Thus there is a neighbourhood ¥ of 0 in c'(10,11) wien

1o, + 4) <0 for ¢ eN. (2.5) implies V(J.v. +¢9)>0 for (J,4) @ [~=,0) x N,
Since the continuum B~ (used in the proof of Theorewm 3.1) emanates in (0,0). The
intersection of ¥ and (-»,0) x N {s not empty. This implies that there are solutions

of (1.11)=(1.13), (1.17) for J < 0 for which V > 0 holds. 8ince V is negative for

-18-




J <0, |J| sufficiently large, there has to be (J,4*) e 2", J #® 0, with
1(0. + ¢*) = 0. Thia gives V(J,t. + ¢*) = 0 and Theorem 3.3 follows.
The condition !(0‘) <0 implies that J" is not contained in (---:M2 (soe

Pigure 2).

J*

Figure 2. Qualitative structure of the J - V-characteristic for 1(0.) < 0.

However, I(t.) € 0 is physically unreascnable and it is not clear whether the
nonuniqueness of the equilibrium solution prevails if I('.) > 0.

We conclude from the Theorems 2.1 and 3.2 that the avalanche case Y > 1'- is
distinguished from the nonavalanche case 0 € v € % by a more rapid decrease of the
current J as V + == (gee Figure 3).

"y

A
N
=

0<y

1
Y>3

Figure 3. Qualitative Structure of the J - V-characteristic for
various Y's (1(0.) > 0 is assumed) for reverse bias.
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We remark that an investigation of (1.11)=(1.13), (1.17) for nonnegative current can be
done in a similar fashion. A relation of the term (2.5) (with a different functional 1I)
holds and the existence of an unbounded continuum of solutions l’ follows as in the proof
of Theorem 3.1. To conclude that l* contains solutions for all J > 0 additional a
priori estimates have to be cbtained (since the estimates in Section 2 only hold for
J <€ 0). Por the case a ¥ 0 these estimates are given in Mock (1983), Markowich (1983).
Pinally, assume that a is not a functional on c‘((o,m but simply a function
(3.8) a1+ R+ (0,Y], & 4is continuous and nondecreasing, such that the ioniszation rate
a(P’(x)) is space-dependent. Then (2.4)-(2.6) have to be modified by substituting ‘as’

L L] L]
i in the integrands by ] a(b'(s))ds and ';—“' in the integration intervals by that value
0

- x

x @ [0,1) for which f a(d'(s))as = % holds. Theorem 3.1 still holds. By estimating
[]

(2.12) in terms of Y an analogue of (2.18), (2.20) (also in terms of Y) implying

'$(1) + @ a5 J + =»' {g obtained and Theorem 3.2 and Corollary 3.1 follow. The

1
estimates of the current-voltage characteristic given in Theorem 2.1 for 0 < y < ; still

hold. The avalanche-estimate (2.25) (with & 1in the upper bound substituted by Y) holds

=9, /1t
if for example a(Tt) > c‘o with o, suff. large and O

1 suff. small.

2
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